

Product Specification and Approval Sheet Version

Page

1

1/4

Radial Leaded PTC Resettable Fuse: FRHV Series

1. Summary

- (a) RoHS Compliant (Lead Free) Product
- (b) Applications: Wide variety of electronic equipment
- (c) Product Features: Low hold current Solid state, Radial leaded product ideal for up to 60V/100V/250V/600V
- (d) Operation Current: 0.08A~0.40A
- (e) Maximum Operation Voltage: 60V/100V/250V_{DC}
- (f) Maximum Interrupt Voltage: 250V/600V_{AC}
- (g) Temperature Range: -40°C to 85°C

2. Agency Recognition

- UL: File No. E211981
- C-UL: File No. E211981
- TÜV: *File No. R50138901

*FRH160-600MF and FRH200-600VF~FRH400-600F TÜV In Process.

3. Electrical Characteristics (23°C)

Part Number	Hold Current	Trip Current	Max. Time		Max.	Max. Oper.	Max. Int.	Тур.	Resistance	
			to Ti Current	rip Time	Current	Voltage	Voltage	Power	R _{MIN}	R1 _{MAX}
	Ι _Η , Α	Ι _Τ , Α	Α	Sec.	I _{МАХ} , А	V_{MAX}, V_{DC}	V_{I-MAX}, V_{AC}	Pd, W	Ohm	Ohm
FRH080-250VF	0.08	0.16	0.35	4.0	3.0	100	250	1.0	14.00	33.00
FRH110-250VF	0.11	0.22	1.00	2.0	3.0	100	250	1.0	5.00	16.00
FRH120-250VF	0.12	0.24	1.00	2.0	3.0	100	250	1.0	4.00	16.00
FRH145-250VF	0.15	0.29	1.00	2.5	3.0	100	250	1.0	3.00	12.00
FRH180-250XF	0.18	0.65	3.00	2.0	10.0	100	250	1.0	0.80	4.00
FRH150-600MF	0.15	0.30	1.00	4.0	3.0	250	600	1.0	6.00	17.00
FRH160-600MF	0.16	0.32	1.00	7.0	3.0	250	600	1.0	4.00	16.00
FRH160-600VF	0.16	0.32	1.00	7.0	3.0	250	600	1.0	4.00	18.00
FRH200-600VF	0.20	0.40	1.00	12.0	3.0	250	600	1.0	4.00	13.50
FRH250-600VF	0.25	0.85	3.00	1.0	3.0	250	600	1.0	1.00	7.00
FRH400-600F	0.40	1.00	3.00	4.0	3.0	60	600	1.0	0.95	1.90

I_H=Hold current-maximum current at which the device will not trip at 23° C still air. I_T=Trip current-maximum current at which the device will always trip at 23° C still air.

 M_{MAX} = Maximum fault current device can withstand without damage at rated voltage (V_{MAX}). V_{MAX}=Maximum operating voltage at which the device can withstand without damage at its rated current.

VI-MAX = Maximum interrupt voltage device can withstand for short period of time. (Not for long term)

Pd=Typical power dissipated from device when in the tripped state in 23°C still air environment.

R_{MIN}=Minimum device resistance at 23°C

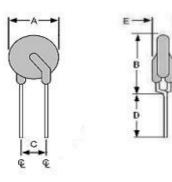
R1_{MAX}=Maximum device resistance at 23°C 1 hour after tripping.

Physical specifications:

Lead material: Tin plated copper, 22 AWG. Soldering characteristics: MIL-STD-202, Method 208E.

Insulating coating: Flame retardant epoxy, meet UL-94V-0 requirement.

*NOTE: All FRHV products are designed to assist equipment to pass ITU, UL60950 or GR1089 specification.


*FRH150-600MF, FRH160-600VF meet UL497A Overvoltage and Endurance Conditioning requirements for Thermistor type component.

CAUTION: FRHV devices are not intended for continous use of Line Voltage such as 120V_{AC}~600V_{AC} and above.

Designed and manufactured by Fuzetec Technology Co., Ltd., offered by RFE International, Inc. NOTE: Specification subject to change without notice.

Product Specification and Approval Sheet Version

4. Production Dimensions (millimeter)

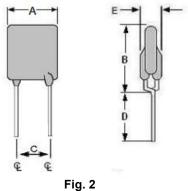
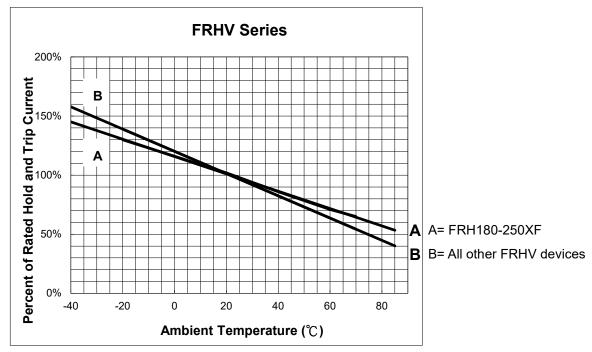
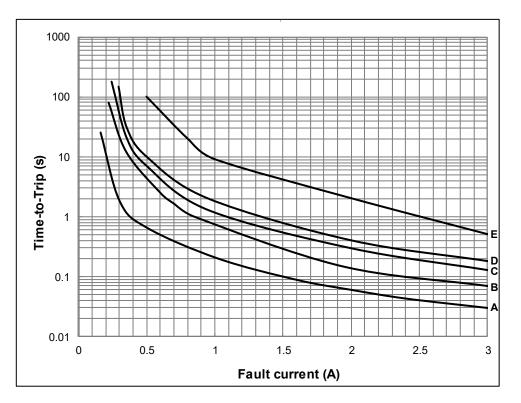
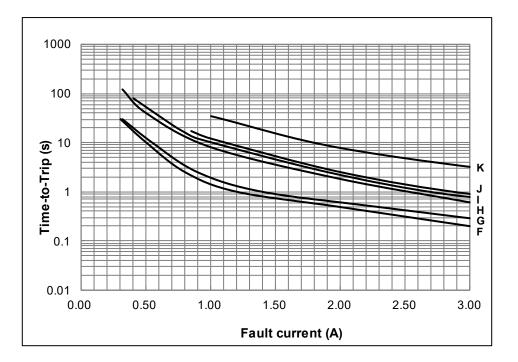



Fig. 1 Lead Size: 22AWG φ0.65 mm Diameter

Lead Size: 22AWG φ0.65 mm Diameter

Part	F ia	Α	В	С	D	E Maximum	
Number	Fig.	Maximum	Maximum	Typical	Minimum		
FRH080-250VF	1	5.8	9.6	5.0	4.7	4.6	
FRH110-250VF	1	6.8	9.9	5.0	4.7	4.6	
FRH120-250VF	2	6.5	11.0	5.0	4.7	4.6	
FRH145-250VF	2	6.5	11.0	5.0	4.7	4.6	
FRH180-250XF	1	9.0	12.0	5.0	4.7	3.8	
FRH150-600MF	2	9.0	12.5	5.0	4.7	4.6	
FRH160-600MF	2	9.0	12.5	5.0	4.7	4.6	
FRH160-600VF	2	16.0	12.6	5.0	4.7	6.0	
FRH200-600VF	2	12.0	14.0	5.0	4.7	6.0	
FRH250-600VF	2	12.0	15.0	5.0	4.7	6.0	
FRH400-600F	2	15.0	18.0	5.0	4.7	6.0	


5. Thermal Derating Curve



Designed and manufactured by Fuzetec Technology Co., Ltd., offered by RFE International, Inc. NOTE: Specification subject to change without notice.

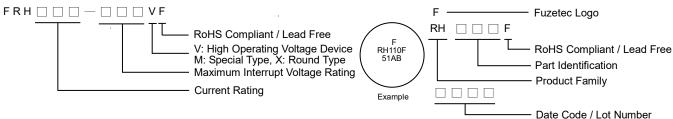
6. Typical Time-to-Trip at 23℃

A= FRH080-250VF B= FRH110-250VF C= FRH120-250VF D= FRH145-250VF E= FRH180-250XF

F = FRH150-600MF G = FRH160-600MF H = FRH160-600VF I = FRH200-600VF J = FRH250-600VF K = FRH400-600F

Page

Version 1


7. Material Specification

Lead material: Tin plated copper, 22 AWG. Soldering characteristics: MIL-STD-202, Method 208E. Insulating coating: Flame retardant epoxy, meets UL-94V-0 requirement.

8. Part Numbering and Marking System

Part Numbering System

* FRH150-600MF Marking: RH6150F, FRH160-600MF Marking: RH6160F, FRH160-600VF Marking: RH6160F * FRH200-600VF Marking: RH6200F, FRH250-600VF Marking: RH6250F, FRH400-600F Marking: RH6400F

Note: Font on Marking may look slightly different due to fine turnings of each Marking printer.

Warning: - Each product should be carefully evaluated and tested for their suitability of application.

- Operation beyond the specified maximum rating or improper use may result in damage and possible electrical arcing and/or flame.
- PPTC device are intended for occasional overcurrent protection. Application for repeated overcurrent condition and/or prolonged trip are not anticipated.
- Avoid contact of PPTC device with chemical solvent, including some inert material such as silicone based oil, lubricant and etc. Prolonged contact will damage the device performance.
- Additional protection mechanism are strongly recommended to be used in conjunction with the PPTC device for protection against abnormal or failure conditions.
- Avoid use of PPTC device in a constrained space such as potting material, housing and containers where have limited space to accommodate device thermal expansion and/or contraction.