

■ INTRODUCTION

- Complies with IEC60384-14
- Single Layer AC Disc Safety Capacitor
- Coated with flame-retardant epoxy resin (conforming to UL94V-0)
- Lead with tin plated copper wire, inert metal copper or silver as a coating after the electrode, see diagram
- Halogen-free available

■ RECOGNITIONS: made for RFE by UL/VDE/CQC shop Welson

Approved	Country	Standards	Rated \	√oltage	Certification Number		
monogram	Country	Stariuarus	KL (X1Y2)	WD (X1Y1)	KL (X1Y2)	WD (X1Y1)	
c F11 us	USA	UL 60384-14	X1 : 500Vac	X1 : 760Vac	F10	1570	
c 71.3 us	Canada	UL 60364-14	Y2 : 500Vac	Y1 : 500Vac	E104572		
DYE NO	Germany	EN60384-14 (0565-1-1) : 2014-04 EN60384-14: 2013-08 IEC 60384-14 ed. 4	X1 : 440Vac Y2 : 300Vac	X1 : 660Vac Y1 : 500Vac	40016156	4016157	
	Korea	KC60384-14 / KC60384-1	250Vac		SZ03004-17002	SZ03004-17001	
œc	China	GB/T 6346.14-2015	X1 : 400Vac Y2 : 250Vac X1 : 400Vac Y1 : 250Vac		CQC03001008380	CQC03001008379	

■ ELECTRICAL CHARACTERISTICS

Characteristics	WD type (X1 Y1)	KL type (X1 Y2)				
Capacitance range	1pF to 0.01uF	1pF to 0.015uF				
Rated voltage	X1: 760/660/400Vac; (1500 Vdc) Y1: 500/250Vac; (1500 Vdc)	X1: 500/440/400Vac; Y2: 500/300/250Vac				
Dielectric strength	4000Vac (50Hz-60Hz, 50mA max.) for 1 minute.	2500Vac (50Hz-60Hz, 50mA max.) for 1 minute.				
Capacitance (CR)	Within the specified tolerance. Y5P, Y5U, Y5V, X7R measured at 1k C0G, SL measured at 1MHz±20% Both are 1Vrms, 25	Hz±20%				
Dissipation Factor (tanδ) or Q Value	:	Y5V: nδ: 0.025 max. tanδ: 0.050 max.				
Insulation resistance	10,000MΩ minimum at 500VDC for 1 minute.					
Operating temperature	-55°C to 125°C	_				

■ CAPACITANCE CHART

Class				X1 Y2	(KL type)					X1 Y	1 (WD ty	pe)		
Dielectric		COG (C)	SL (L)	Y5P (B)	X7R (X)			Y5V (F)	COG (C)	SL (L)	Y5P (B)	X	7R X)	Y5U (E)	Y5V (F)
Capacitance pF)	1.0 1.5	G G	G G	G G					G G	G G	G				
. ,	2.2 3.3	G G	G G	G G					G G	G G	G				
	4.7	G G	G G	G G	G				J	J	1				
	5.1 6.8	J	J	- 1					K	K	J				
	10 12	J	G G	1	G				K	G G	J		J		
	15 18		G	1	G					G G	J		J J		
	20 22		G	i	G					G	J		J		
	27 30		J	1	G G					G G	J		K K		
	33 36		J	1 1	G					G G	K		K K		
	39 47		J K	i	G					G	K K		K K		
	56 68		К	К	G					L	К		К		
	82		K K	K K	G G					L L	K		K K		
	100 120			G	G						K		K K	G	
	150 180			G G	G						K		K	G G	
	220 270			G G	G						K		K K	G G	
	330 390			G J	G	E					K		K K	G G	
	470			J	i	- 1		E			K		K	G	G
	560 680 820			J	l I J	E		E E			K		K L L	G G	G G
	860			J	J	1		E			L		L	!	G
	1000 1200			L L	M	(G G			N N		N N	i	G G
	1500 1800			N N	M			!			O R		O R	K	J
	2000			0		,	,	1			R		R R	L	J
	2700 2800							J						L	K
	3000 3200							J						M M	L
	3300 3600				1 2			J K		D	_	_T		M 0	L M
	3900 4000					1		K K		KL103M				0	M
	4700					ı	1	L	_ (KL103M W E @@ AL @ && X14007500V-		-		Q	М
	5000 5500						1	L	/	Y2 2507 300V-				Q	N N
	5600 6000							L M			Φd			Q S	N N
	6800 8000				-	F		M N		F		111		S	N Q
	8200 8600					F	?	N N			1	1		S	Q R
	9000 10000						3	0						T U	R R
	15000					i		Q		200				0	K
Lead Spacing ((±1.0mm)			5.0 & 7.5 & 10.0												
Thickness (T max.)	6.0mm 6.0mm													
Capacitance Tolerance		Below 10pF: ±0.25pF or ±0.50pF; 10pF~100pF: ±5% or ±10%; Over 100pF: ±10% or ±20%													
Coating		Epoxy resin (UL94V-0)													
Body Color		Blue													
Code		E	G	1	J	к	L	м	N	0	Q	R	s	т	U
Diameter (D) may	7mm	8mm	9mm	10mm	11mm	12mm	14mm	15mm	16mm	19mm	20mm	22mm	25mm	28r

■ HOW TO ORDER

<u>5 - KL F 472 M AC2K5 10 Y 5</u>
(1) (2) (3) (4) (5) (6) (7) (8)

1. Type Code: KL class X1-Y2; WD class X1-Y1

2. Temperature Characteristic:

Code	Temp. Coefficient	Code	Temp. Coefficient	Code	Temp. Coefficient
С	C0G	В	Y5P	Е	Y5U
S	SL	Х	X7R	F	Y5V

3. Capacitance Code:

Expressed by three-digit alphanumeric. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers. If there is a decimal point in between first two figures, it is expressed by the capital letter "R". See below examples:

Code	Capacitance	Code	Capacitance	Code	Capacitance	
5R1	5.1 pF	100	10 pF	472	4700 pF	
8R0	8 pF	101	100 pF	103	0.1 uF	

4. Capacitance Tolerance Code

Code	Tolerance	Code	Tolerance	Code	Tolerance
С	± 0.25pF	J	± 5%	М	± 20%
D	± 0.50pF	K	± 10%	Z	+80/-20%

5. Minimum Test Voltage (AC): X1Y2 = AC2K5, X1Y1 = AC4KV

6. Lead Spacing (F)

Code	Code Lead spacing (F)		Lead spacing (F)
5	5.0±0.8mm	7	7.5±0.8mm
6	6.35±0.8mm	10	10.0±0.8mm

7. Lead style

8. Lead length & package style:

Omitted for un-cut bulk pack or Code L

5 = 5 + /-1mm, bulk pack, 6 = 6 + /-1mm ... etc. (cut leads only available in bulk pack)

A = Taped & Ammo pack, R = Taped & on Reel

P/N

Ceramic Capacitors CLASS 5 Series: AC X1Y1 & X1Y2

■ TAPING SPECIFICATION

Lead spacing (F): 5mm

Lead spacing (F): 7.5mm

Lead spacing (F): 10.0mm

■ SPECIFICATION AND TEST METHOD

- 1. Please measure with the ambient temperature of 25±2°C, relative humidity of 45~85 percent.
- 2. Please measure in this order: Capacitance, DF, IR, Test voltage
- 3. Measurement of voltage of high-voltage capacitors should be based on 150V/µs rate, rise from 0V voltage . The test of time can be increased to test the voltage start time. Measuring the end of the capacitor should discharge.

No.	lte	em	:	Specification		Те	sting Meth	od	
1		ance and nsions		efect on appearance form ns are within specified range.		acitor should be v		d for evidence of defect. e calipers.	
2	Mar	king	To be easily le	egible		The capacito	r should be visua	ally inspected	
3	Capacita	ince (CR)	Within specifie	ed tolerance					
4	Dissipation Factor (tan δ) or Q Value		Char. C, S X, B, E F	Specification $Q \geq 400+20CR \; (CR < 30pF)$ $Q \geq 1000 \qquad (CR \geq 30pF)$ $tan \; \delta : \; 0.050 \; max.$ $tan \; \delta : \; 0.075 \; max.$	The capacitor and dissipation factor should be measured at 25±1°C with 1±0.2KHz (char. C & L: 1±0.2MHz) and AC5V(r.m.s.) max.				
5		Resistance R.)	10,000MΩ mii	n.	within 60		ng. The voltage	ure with DC500±50V should be applied to	
		Between Lead Wires	No failure		Table 1 a	acitor should not are applied betwe Discharge currer Type Test Voltage	en the lead wire	en test voltages of s for 60 sec. WD AC4000V	
6	6 Dielectric Strength Body Insulation		Strength Body No failure	No failure		connected at right, a wrapped to the disfrom each Then, the inserted metal ba Finally, A applied for the street of	terminals of the d together. Then a metal foil should around the body tance of about 3 h terminal. e capacitor shoul into a container f Is of about 1mm. C voltage of Tator 60 sec. betweet lead wires and it	a, as shown in fig d be closely or of the capacitor to 4mm d be dilled with diameter. ole 2 is en the	ure W
							< Table 2 >		
						Type Test Voltage	KL AC2500V	WD AC4000V	
						rest voltage	A02300V	704000	
			Char. B	Capacitance Change Within ± 10%		acitance measur in Table 3.	ement should be	made at each step	
			×	Within ± 15%			< Table 3 >		
			E	Within +20% / -55%		Step Temperature (°C)		re (°C)	
7		erature	F	Within +30% / -80%		1	20 ± 2	· ,	
,	Charac	teristics	(Tem	np range: -25 to +85°C)		2	-25 ±		
			Char.	Temperature Coefficient		3	20 ± 2	2	
			C	0±30ppm/°C		4	85 ± 2	2	
			s	+350 to -1000ppm/°C		5	20 ± 2	<u> </u>	
			(Tem	np range: -25 to +85°C)					

continue ...

■ SPECIFICATION AND TEST METHOD (continue ...)

No.	Ite	m	Specification	Testing Method
8	Solderability of Leads		Lead wire should be soldered with unif coating on the axial direction over 3/4 of circumferential direction.	
		Appearance	No marked defect	The lead wires should be immersed in
9	Soldering Effect	Capacitance change	C, S: ±5% or 1pF, whichever is larger B: ±10% X, E, F: ±20%	solder of 350±10°C or 260±5°C up to 1.5mm to 2.0mm from the root of terminal for 3.5±0.5 sec. (10±1 sec for 260±5°C)
	(Non-Preheat)	I.R.	1,000MΩ min	Pre-treatment: Capacitor should be stored at 85±2°C for 1hr., and then placed at room condition for 24±2 hrs. before initial meaurements.
		Dielectric Strength	Per Item 6	Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.
		Appearance	No marked defect	
10	Soldering Effect	Capacitance change	C, S: $\pm 5\%$ or 1pF, whichever is larger B: $\pm 10\%$ X, E, F: $\pm 20\%$	Capacitor should be stored at 120+0/-5°C for 60+0/-5 sec. The lead wires should be immersed in solder of 260±5°C up to 1.5mm to 2.0mm from the root of terminal for 7.5+0/-1 sec.
	(On-Preheat)	I.R.	1,000MΩ min	Pre-treatment and Post-treatment: see per Item 9
		Dielectric Strength	Per Item 6	·
		Appearance	No marked defect	The capacitor should be firmly soldered to the supporting lead
11	Vibration Resistance	Capacitance	Within the specified tolerance	wire and vibrated at a frequency range of 10Hz to 55Hz,1.5mm in total amplitude, with about a 1 minute rate of vibration change from 10Hz to 55 Hz and back to 10Hz. Apply for a total of 6 hrs.,
		tan δ or Q	Per Item 4	2 hrs each in 3 mutually perpendicular directions.
		Appearance	No marked defect	
		Capacitance change	C: Within ±2.5% S: Within ±5% X, B, E: Within ±10% F: Within ±15%	
12	Humidity (Under Steady State)	tan δ or Q		,
		I.R.	3,000MΩ min	
		Dielectric Strength	Per Item 6	
		Appearance	No marked defect	
		Capacitance change	C: Within ±2.5% S: Within ±5% X, B, E: Within ±10% F: Within±15%	
	Lium: dite.		Char. Specification	Apply the rated voltage for 500±12 hrs. at 40±2°C in 90 to 95% relative humidity.
13	Humidity Loading	lumidity -oading tan δ or Q -	C, S $Q \ge 275+5/2C_R (C_R < 30)$ $Q \ge 350 (C_R \ge 30)$	oF)
		.a., 0 01 Q	X, B, E tan δ: 0.050 max.	Capacitor should be stored for 1 to 2 hrs. at room condition.
			F tan δ: 0.075 max.	
		I.R.	$3,000M\Omega$ min	
		Dielectric Strength	Per Item 6	

continue ...

■ SPECIFICATION AND TEST METHOD (continue ...)

No.	lte	em	Specification	Testing Method				
		Appearance	No marked defect	Impulse Voltage: Each individual capacitor should be subjected to a 5kV				
		Capacitance change	C: Within ±2.5% S: Within ±5% X, B, E: Within ±10% F: Within±15%	(Type X1Y1: 8kV) impulses for three times. After the capacitors are applied to life test. 100(%) 11=1.2us=1.67T T2=50us				
		I.R.	3000MΩ min	50 0				
14	Life Test Dielectric Strength		Per Item 6	Apply a voltage of Table 4 for 1000 hrs. at 125+2/-0°C, and relative Humidity of 50% max. < Table 4 > Applied Voltage AC425V (r.m.s.), except that once each hour the Voltage is increased to AC1000V (r.m.s.) for 0.1 sec. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition				
15	Flame	∋ Test	The capacitor flame discontinues as follows. Cycle Time (sec.) 1 to 4 30 5 60	The capacitor should be subjected to applied flame for 15 sec. And then removed for 15 sec. until 5 cycles are completed. Capacitor Flame Gas Burner (in mm)				
16	Tensile Robustness		Lead wire should not be cut off.	Fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N and keep it for 10±1 sec.				
	Terminations	Bending	Capacitor should not be broken.	Each lead wire should be subjected to 5N weight and then a 90° bend, at the point of egress, in one direction, return to original position, and then apply a 90° bend in the opposite direction at the rate of one bend in 2 to 3 sec.				
17	Active Fla	nmability	The cheese-cloth should not be on fire	The capacitor should be individually wrapped in at least one but not more than two complete layers of cheese-cloth. The capacitor should not be subjected to 20 discharges. The interval between successive discharges should be 5 sec. The UAC should be maintained for 2 minutes after the last discharge.				
				C1, 2 : 1uF ± 10% C3 : 0.33uF ± 5%, 10KV, Ct : 3uF ± 5%, 10KV Cx : Capacitor under test F : Fuse, Rated 10A R : 100? ± 5% Ur : Rated Voltage Ut : Voltage applied to Ct. L1 to 4 : 1.5mH ± 20%, 16A Rod core choke				
			The hurning time should not exceed 30 sec	The capacitor under test should be held in the flame in the position which best promotes burning. Each specimen should only be exposed once to the flame. Time of exposure to flame: 30 sec.				
18	18 Passive Flammability		The burning time should not exceed 30 sec. The tissue paper should not ignite.	Test Length of flame : 12 ± 1mm Gas burner : Length 35mm min Inside Dia. 0.5 ± 0.1mm Outside Dia 0.9mm max. Butane gas Purity 95% min				

continue ...

■ SPECIFICATION AND TEST METHOD (continue ...)

No.	lte	em	Specification			Testin	g Metho	d	
		Appearance	No marked defect	The capacitor should be subjected to 5 temperature cycles, then consecutively to 2 immersion cycles. < Temperature Cycle >					
				1	Step	Temperature (°C)		Time (min)	
			C: Within ±2.5%		1	-25+0/-3		30	
		Capacitance change	S: Within ±5% X, B, E: Within ±10%		2	Room temperature		3	
			F: Within ±15%		3	125+3/-0		30	
					4	Room temperature		3	
19	Temperature and Immersion	tan δ or Q	r Q Per Item 4			< Imm	C ersion Cycle	cycle time : 5 cycle	
	Cycle				Step	Temperature (°C)	Time (min)	Immersion Water	
					1	65+5/-0	0±3	Clean water	
		I.R.	3,000MΩ min		2	15	15	Salt water	
			,				С	ycle time : 2 cycle	
		Dielectric Strength	Per Item 6	C at Post	t room coi t-treatmer	should be stored andition for 24±2 hint:	rs. before init	1hr., and then placed itial meaurements.	

■ STORAGE ENVIRONMENT

Do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 degree centigrade and 20 to 70%.